УДК 629.124

EDN ZHQOPT

В.В. Князьков ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СОПРОТИВЛЕНИЯ ВОЗДУХА ДВИЖЕНИЮ СУДНА

Нижегородский государственный технический университет им. Р.Е. Алексеева Нижний Новгород, Россия

Рассмотрены возможности численного моделирования в SolidWorks Flow Simulation при выполнении расчетов сопротивления воздуха движению судна. Постановка такой задачи обусловлена тем, что экспериментальные методы изучения сопротивления движению судов широко применяются при выполнении научно-исследовательских работ, когда разрабатываются формы обводов вновь проектируемых судов, а также при оценке ходкости построенных судов. Модельные испытания, которые проводят при проектировании судов, позволяют провести надежное сравнение эффективности различных вариантов проектируемого судна. В качестве менее затратной и более удобной альтернативы модельным испытаниям в настоящее время используют численное моделирование с применение специализированных программ и приложений.

Ключевые слова: проектирование судна, испытание моделей, сопротивление воздуха движению судна, численное моделирование.

Введение

Обязательным этапом проектирования современного судна при оценке его ходкости являются модельные испытания [1]. Модельные испытания в опытовых бассейнах позволяют определить сопротивление воды движению судна и выполнить надежное сравнение эффективности различных вариантов судна в процессе разработки формы обводов. Аэродинамические характеристики судов обычно исследуют в аэродинамических трубах [2].

Внедрение в практику проектирования технологий численного моделирования позволяет значительно повысить качество изделий, экономить время и снижать затраты, связанные с проектированием и испытанием выпускаемой продукции. Современные системы автоматизированного проектирования позволяют точно и достоверно моделировать поведение разрабатываемого изделия и/или его моделей в реальных условиях, начиная с самых ранних этапов. Принято считать, что программный комплекс *SolidWorks* является одним из лидеров в сфере включения разнообразных инструментов и, в частности, инженерного анализа в среду проектирования [3]. Один из наиболее востребованных расчетных модулей семейства *Simulation* – модуль *Flow Simulation*. Данный модуль позволяет моделировать потоки жидкости и газа для вычисления различных характеристик: скорости потока, давления, температуры и т.д. [4].

В данной статье представлены результаты обтекания неподвижного корпуса судна движущимся потоком воздуха с целью определения воздушного сопротивления при движении судна, полученные с помощью модуля *Flow Simulation* и сравнение их с результатами приближенных вычислений.

Объект исследования

В качестве объекта для исследований выбран сухогрузный теплоход проекта 17310 (тип «Россия»). Судно предназначено для перевозки генеральных, насыпных грузов, включая зерно, навалочных грузов, леса и контейнеров международного образца в трюмах и на люковых крышках. Это однопалубное судно с баком и развитым ютом, кормовым расположением машинного отделения, с расположением жилых и служебных помещений в кормовой поло-

вине судна, грузовыми трюмами в носовой части. У судна прямой наклонный форштевень (рис. 1, *a*) и транцевая корма (рис. 1, *б*).

Рис. 1. Сухогрузный теплоход типа «Россия» – проект 17310 (фото с сайта fleetphoto.ru)

б)

Определение воздушного сопротивления при проектировании судна

Водоизмещающие суда двигаются на границе двух сред. Гидроаэродинамические силы, действующие со стороны воды и воздуха на движущееся судно, представляют собой сумму элементарных сил, распределенных по его поверхности, и зависят от их плотности и вязкости. Плотность воздуха при температуре 15 °C и давлении 1013 ГПА составляет ρ_A =1,226 кг/м³. Это значение используют при расчете аэродинамических сил, действующих на надводную часть судна. Удельный вес сопротивления воздуха в общем балансе сопротивления, особенно при отсутствии ветра, невелик и составляет всего 1,5–3,5 %. В условиях ветреной погоды роль сопротивления воздуха уже значительна и при встречном ветре может достигать 10–15 % [1].

Для расчета силы сопротивления воздуха применяется следующая формула

$$R_{AA} = C_{AA} \frac{\rho_A v_A^2}{2} F_T \tag{1}$$

где *C*_{AA} – коэффициент воздушного сопротивления. Пределы изменений коэффициента воздушного сопротивления для транспортных судов *C*_{AA}=0,7...1,2;

 F_T – характерная площадь (обычно это площадь проекции надводной части корпуса судна на плоскость мидель-шпангоута);

 v_A – скорость воздуха (при отсутствии ветра v_A =-v, а v – скорость движения судна, м/с); При наличии ветра v_A =- $v\pm v_{\text{ветр}}$ (легкий ветер: $v_{\text{ветр}}$ =2,5 м/с, что соответствует трем баллам по шкале Бофорта).

При наличии ветра надводная часть корпуса судна находится в неоднородном поле скоростей, изменяющемся по высоте. Поэтому эксперименты по определению сопротивления воздуха (коэффициента сопротивления) в этом случае проводят с моделями надводной части корпуса, расположенными на специальном экране, установленном в рабочей части аэродинамической трубы (рис. 2 *a*) [2]. В случае отсутствия ветра испытывают дублированные модели надводной части корпуса в однородном потоке (рис. 2, δ) [5].

a)

б) Рис. 2. Экспериментальное определение коэффициента сопротивления воздуха с использованием: *a* – специального экрана; б – дублированной модели

Постановка задачи

Для выполнения расчетов были разработаны твердотельные модели [6] сухогрузного теплохода (рис. 1). Модели представлены на рис. 3, *a*, *б*. Площадь проекции надводной части корпуса судна на плоскость мидель-шпангоута (рис. 3, *в*) составляет F_T =134,45 м².

Рис. 3. Твердотельные модели (*a*, б) и проекция надводной части корпуса на плоскость мидель-шпангоута (*в*)

Для задания условий задачи воспользуемся функцией *Мастер проектов*, которая автоматически создает новый проект и позволяет задать имя проекта и создать новую или выбрать существующую конфигурацию (рис. 4, a). По умолчанию для расчетов сохраним систему СИ, а градусы Кельвина изменим на градусы Цельсия (рис. 4, δ).

тер проекта - Имя проекта		? ×	Мастер проекта - Система единиц измер	ения			?
File Edit V Visert Tools Flow	poekt			Система единиц измерени	я;		
Input Data	на проекта: Проект Расчет воздушного сопротивления оннентарии: Моделирование жесткого экрана		K m ³ S	CHCTEMB CGS (cm-g-s) FPS (ft-lb-s) IPS (in-lb-s) NMM (mm-g-s)	Путь Предопределенные Предопределенные Предопределенные Предопределенные	Комментарий CGS (cm-g-s) FPS (thlb-s) IPS (in-lb-s) NMM (mm-g-s)	
Computational Domain Component Control Fluid Subdomains Ko Fans Fans	онфигурация, в которую необходино добавить проект Осоздать новую	~	m/s ft	SI(m-kg-s) USA Создать новую	Предопределенные Предопределенные ¹⁹¹⁹ SI (m-kg-s) (и:	SI (m-kg-s) USA	_
Heat Sources Heat Sources Porous Media Thitial Conditions Goals Goals	ня конфигурации: (Надводный корпус		gal mile/h	Параметр Павная Давление и налряжен	Единиц Десятичны а резуль ие Ра .12	е знаки в 1 единис татах СИ равн	10 10
Coca inicial resities Results Mesh Cut Plots Surface Plots			kalon	— Скорость — Масса — Длина — Температура — Физическое время	m/s .123 kg .123 m .123 12 Kelvin [K]	1 1 -273.15	_
Isosurfaces Flow Trajectories))))	Ny Xem	Процентное отношен	10 Celsus (C) Reaumur ('R) Fahrenheit ('F) Rankine ('Ra)		

a)

Рис. 4. Начало работы

Для обтекания твердого тела задаем тип задачи Внешняя. Поскольку в задаче рассматривается поток, меняющийся со временем, нужно задать условие Нестационарность. Назначим Общее время задачи и Временной шаг выдачи результатов (эти параметры можно оставить по умолчанию и/или уточнить в ходе решения задачи). Выбирая условие Гравитация, обязательно нужно проверить, чтобы ускорение свободного падения было направлено корректно (рис. 5, *a*).

Следующий шаг – выбор текучей среды, в нашем случае это воздух (*Air*; рис. 5, *б*). Характеристики течения сохраняем по умолчанию.

Тип задечи Учитыеть з Овнутренняя ЦИсклем ©Внешняя 2Исклем	енкнутые полости нить полости без условий течения нить внутреннее пространство	»	 Текучая среда Газы Жидкости Неньютоновские	Путь	Новый
Физические нодели Телапореодность в твердих телах Радиационный телалообнем Насталическое наста	Значение		 жидкости Сжимаемые жидкости Реальные газы Пар	_	
Общее время задачи Временной шат выдачи результатов	10 s 0.1 s				Добавить
Состания Компонента Укомпонента Скомпонента		100	Текучие среды проекта Air(Газы)	Выбранные по умолчанию Г	Удалить
Вращение Свободиая поверхность			Характеристика течения Тип течения	Значение Лакинарнов и турбулентное	
	Зависиность	»	Влажность		
< Назад Далее	 Отмена Справка 		КНазад	Далее > Отмена	Справка

Рис. 5. Выбор типа задачи (а) и текучей среды (б)

Также сохраним параметр условия на стенке по умолчанию (Адиабатическая стенка) и зададим надбавку на шероховатость (рис. 6, *a*). В окне Начальные и внешние условия (рис. 6, δ) введем скорость потока по оси *x* в противоположном направлении. Кроме постоянного значения скорость потока может быть задана с помощью зависимостей, табличных значений или формулы (кнопка Зависимость, рис. 6, δ).

Рис. 6. Выбор условий на стенке (а) и начальных условий задачи (б)

Расчеты воздушного сопротивления судна

Расчетную область и ее размеры будем назначать в зависимости от конфигурации модели через задание координат области. Для дублированной модели в направлении оси у удобно использовать симметрию относительно плоскости КВЛ (рис. 7, *a*, *б*).

Рис. 7. Расчетная область для дублированной модели с учетом ее симметрии (*a*, б) и при наличии жесткого экрана (*в*)

Используя вкладку Опции управления расчетом основного меню Flow Simulation, назначают условия для выполнения расчета (рис. 8). Для этого задаем Сходимость целей и Физическое время выполнения расчета. По умолчанию время переходит из Мастера проектов и его можно корректировать. Во вкладке Адаптация сетки установим максимально допустимое число ячеек при их дроблении: 7 500 000. Для Стратегии адаптации сетки выберем условия Периодически и Физическое время. От этого параметра зависит, в какие моменты расчета будет выполняться адаптация сетки.

Расчет				
• •				
📴 Опции управления расчетом				
Новое Опции управления расчетом		? ×		
Завершение Адалтация сетки Расче	т Сохранение			
Параметр	Критерии Значение	OK		
 Условия завершения Клиторий останорки раснота 		Отмена		
Сходимость целей Вс	анниз критериев удовлетворен (после всех 👻 🗆	Connection		
Физическое время 10	s	Справка		
Итерации				
Продувки				
Время расчета				
Адаптации сетки Ис	спользуется количество адаптаций сетки из таб			
🖃 Критерии целей		Опции управления расчетом		? ×
Интервал анализа ав	томатичес 🗡			
🗹 GG Сила (X) 2 ав	томатичес 🗡	Завершение Адаптация сетки Расчет	Сохранение	
		Параметр	Значение	OK
9ведомление		Глобальная область	уровень = 2	074/01/0
Сообщить об окончании р				Отлена
		Настройки адаптации сетки		Справка
		Максимально допустимое числ	o 7 500 000	
		Стратегия адаптации сетки	Периодически 🗠 Физическое вре 🗠	
L		Интервал релаксации	автоматически 💙 0.4 s	
		Стартовый момент	автоматически 🗹 1 s	
		Период	автоматически 💟 0.5 s	
				Сброс

Рис. 8. Опции управления расчетом

В качестве *Глобальной цели* определим силу по оси *x*, которая будет соответствовать силе сопротивления воздуха в глобальной системе координат. Для выполнения расчета необходимо выполнить настройку *Базовой сетки*. Выбранные граничные условия *Реальная стен*ка и *Глобальная цель* после их выбора отобразятся в *Дереве анализа Flow Simulation* (рис. 9)

🖆 Реальная стенка 1		?		🏁 Глобальные цели	?	
✓ ×				✓ X →		
Выбор		~		Параметры	^ ^	
Грань<1> Грань<2> Грань<3> Грань<4>			5)	Параметр Міл Ср Ма Ср Исі А Сила (X) Глобальная система координат		
🍸 Грань<5>		\sim	0)	🖽 Настройки глобальной сетки	?	
•				✓ × →		
Базовая ось: Х		\sim		Тип	^	
Тип		^		Ручной режим		
				Настройки	^	Проект(1)
Идеальная стенка					7	— — Входные данные — — Расчетная область
Параметры на стенке		~		t 0.00767694316 m	4	— на Подобласти течения — на Граничные условия
Tw 20.05 °C	*	f*			▲ ▼	 Реальная стенка 1 Нели
0 W/m^2/K	*	f*		Равномерная сетка		GG Сила (X) 1
400 micrometer	*	f*		Улучшить разрешение каналов		Плобальная сетка
			в)			 <i>е</i> В Результаты (Не загружены)

Рис. 9. Выбор граничных условий (*a*), глобальной цели (б), настройка базовой сетки (*в*) и Дерево анализа (*г*)

Расчет завершится, как только будет достигнута сходимость указанных для расчета целей. Условие сходимости целей может определяться автоматически или задаваться в режиме *вручную*. Условие для завершения расчета, например, в *автоматическом* режиме – размах амплитуды колебаний цели на *Интервале анализа*, который отсчитывается от текущей итерации, становится ниже значения *Критерия* сходимости цели, цель считается сошедшейся (рис. 10).

Рис. 10. Условие завершения расчета (*a*), фрагмент диаграммы сходимости цели (*б*) и таблица целей (*в*)

Основные результаты и выводы

Для визуализации распределения параметров течения и исследования полученных результатов *Flow Simulation* предоставляет множество различных элементов и инструментов обработки результатов. Можно построить картинку, например, в любом сечении или на выбранных гранях или поверхностях модели. На рис. 11 приведены примеры визуализации результатов выполненных расчетов.

Рис. 11. Эпюры распределения скорости потока в ДП: *а* – при наличии жесткого экрана; *б* – дублированная модель

На рис. 12 приведены *Картины в сечении*, для которых в качестве типа отображения выбрана сетка. Из эпюр видно, что сетка автоматически уточнилась в местах завихрения воздушного потока и там, где скорость потока существенно отличается от заданного значения.

Рис. 12. Тип картины в сечении Сетка-

Значение силы сопротивления можно посмотреть, открыв вкладку *Цели*. Результаты выполненных расчетов по формуле (1) и численных расчетов при отсутствии ветра и скорости движения судна *v*=5,65 м/с приведены в табл. 1.

Таблица 1. Результаты расчетов сопротивления воздуха

Коэф	0,8	1,0	1,2			
	2,15	2,68	3,22			
	Дублирова	<i>R</i> _A =2,52 кН; <i>C</i> _{AA} =0,94				
Численный расчет	Наличие	<i>R</i> _A =2,17 кН; <i>C</i> _{AA} =0,81				
	жесткого экрана	Наличие ветра <i>v</i> =2,5 м/с	$R_A=4,9$	95 кН; САА	a=0,89	

Таким образом:

- полученные значения численных расчетов сопротивления воздуха попадают в диапазон вычислений по формуле (1) для рекомендуемых [1] значений коэффициента сопротивления;
- численные расчеты для модели при наличии жесткого экрана и для дублированной модели дают достаточно близкие значения коэффициентов сопротивления (разница составляет 5 %);
- приведенные примеры свидетельствуют о достоверности получаемых результатов и демонстрируют эффективность численного моделирования внешнего воздушного потока в *SolidWorks Flow Simulation*;
- полученные результаты могут быть использованы при проектировании судов.

Библиографический список

- 1. Войткунский, **Я.И.** Сопротивление воды движению судна: учебник / **Я**.И. Войткунский. Л.: Судостроение, 1988. 288 с.
- 2. Тренажерный комплекс. Крыловский государственный научный центр [Электронный ресурс]. Режим доступа: https://krylov-centre.ru (дата обращения 25.10.2023).
- 3. Алямовский, А.А. SolidWorks Simulation. Как решать практические задачи / А.А. Алямовский. СПб: БХВ-Петербург, 2012. 448 с.
- 4. Салимов, М. Анализ внешнего потока в SolidWorks Flow Simulation // CADMASTER. 2021. № 2. С. 42-45.
- 5. Модель судна в аэродинамической трубе СПГУВК.JPG [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Файл:Модель_судна_в_аэродинамической_трубе_СПГУВК.JPG (дата обращения 25.10.2023).
- 6. Князьков, В.В. SolidWorks. Проектирование судов: учеб. пособие / В.В. Князьков. Н. Новгород: НГТУ им. Р.Е. Алексеева, 2018. – 228 с.