УДК 629.5.036 EDN: YKGPAP

Е.С. Шишов, С.Н. Зеленов ЭКСПЕРИМЕНТАЛЬНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ МАСШТАБНЫХ МОДЕЛЕЙ ВОДОМЕТНЫХ ДВИЖИТЕЛЕЙ

Нижегородский государственный технический университет им. Р.Е. Алексеева *Нижний Новгород, Россия*

Дано описание стенда для испытаний масштабных моделей проектируемых водометных движителей. Приборное обеспечение стенда позволяет измерять величины, необходимые для расчета характеристик водометного движителя и исследуемой модели: расхода Q, напора H, создаваемой тяги P, частоты вращения вала электродвигателя n, потребляемой мощности N, КПД рабочего колеса η_{pk} и скорости хода модели v_x . Далее по рассчитанным характеристикам производится сравнение работы различных моделей движителей.

Ключевые слова: экспериментальный стенд, водометный движитель, характеристики, модель.

Разработка водометных движителей направлена на решение ряда задач по оптимизации геометрических параметров и совершенствованию рабочего процесса в системе «водометный движитель – корпус судна». Эффективность работы этой системы зависит от множества факторов: условий эксплуатации, геометрии обводов корпуса судна, возникающего дополнительного сопротивления корпуса, скорости движения, условий работы насоса движителя, его тяговых и мощностных характеристик [1, 2]. Моделирование течения вязкого турбулентного несжимаемого потока жидкости с протеканием множества гидродинамических процессов является достаточно сложной задачей. На практике для определения параметров потока в таких случаях используют приближенные одномерные и двухмерные эмпирические модели, численное 3D-моделирование. Однако эти методы не могут в полной мере отразить все особенности работы водометного движителя, они дают лишь приближенные результаты. Поэтому необходимым условием выбора рациональной конструкции водометных движителей являются модельные испытания, проводимые в специальных опытовых бассейнах и кавитационных трубах; испытания позволяют сравнить расчетные параметры с результатами физического эксперимента [3].

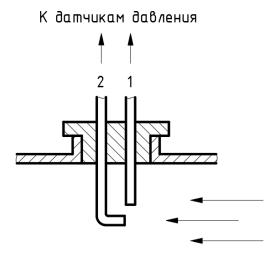


Рис. 1. Измерительные трубки Пито-Прандля 1 — трубка статического давления; 2 — трубка полного давления

В данной работе представлены результаты разработки стенда для испытания масштабных моделей проектируемых водометных движителей. Основная задача создаваемого стенда заключалась в обеспечении возможности определения зависимости скорости хода модели v_x , создаваемой тяги P, потребляемой мощности N, расхода Q, напора H и КПД рабочего колеса $\eta_{\rm pk}$ в зависимости от частоты вращения вала электродвигателя n. Скорость и давление потока жидкости в характерных сечениях возможно при помощи динамического давления $p_{\rm oun}$, которое, в свою очередь, уже можно определить через трубку Пито-Прандтля (рис. 1). Далее на основе определенных характеристик производится сравнение работы различных моделей движителей. Исходя из этого, была разработана схема экспериментального стенда (рис. 2).

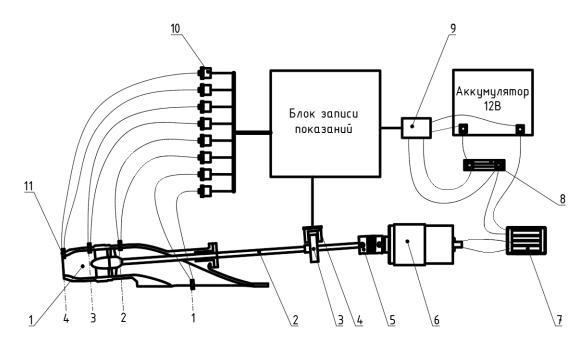


Рис. 2. Схема экспериментального стенда

1 — водометный движитель; 2 — валопровод; 3 — щелевой диск; 4 — оптический датчик частоты вращения; 5 — соединительная муфта; 6 — электродвигатель; 7 — регулятор мощности двигателя; 8 — токоизмерительный шунт; 9 — вольтамперметр; 10 — датчики давления; 11 — трубки Пито-Прандтля

В характерных сечениях 1, 2, 3, 4 перед входом в водометную трубу, перед рабочим колесом, после спрямляющего аппарата и на срезе сопла соответственно, выполнены отверстия, в которые монтируются измерительные трубки 11 с внутренним диаметром 2 мм, к которым припаяны штуцеры. Измерительных трубки соединяются ПВХ шлангами с соответствующими датчиками давления. Для измерения используются пьезорезистивные датчики (рис. 3, а) с максимальным измеряемым давлением 0,5 МПа. Считывание сигнала датчиков давления производится при помощи готового модуля на основе 4-х канального 16-битного АЦП (аналого-цифрового преобразователя) ADS1115 (рис. 3, б)

Оборудование для измерения потребляемой мощности собрано в отдельный блок (рис. 3, г) и состоит из аккумуляторной батареи с напряжением 12В, состоящую из трех литиевых элементов формата 18650, модуля измерения тока, напряжения и мощности на основе микросхемы INA226 (рис. 4, в) и токоизмерительного шунта 75ШСМ 20А.

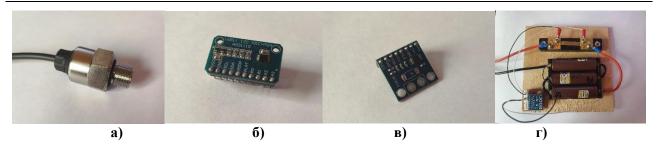


Рис. 3. Применяемое оборудование для экспериментального стенда $a-\partial a$ тик давления EARU Electric 0,5МПа; $b-\partial b$ АЦП ADS1115; $b-\partial b$ INA226; $b-\partial b$ Советия измерения потребляемой мощности

Частота вращения рабочего колеса водомета измеряется при помощи щелевого диска и оптического датчика (рис. 4, a), который регистрирует каждый оборот вращения вала двигателя.

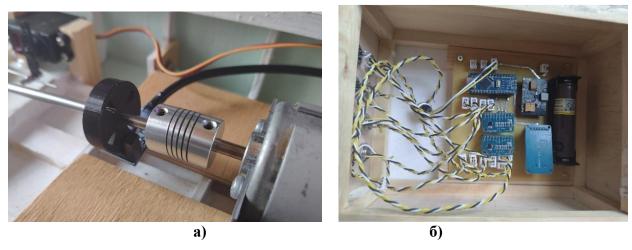


Рис. 4. Датчик частоты вращения и блок записи: а – оптический датчик частоты вращения; б – блок записи показаний

В основе блока записи (рис. 4, б) показаний лежит AVR микроконтроллер ATmega328P, который по шине I2C принимает показания с пары АЦП и блока измерения потребляемой мощности. Напрямую обрабатываются сигналы с датчика частоты вращения, при помощи аппаратных прерываний микроконтроллера вычисляется число оборотов вращения вала. По шине SPI производится запись данных с датчиков на microSD карту, которая после проведения замеров считывается при помощи персонального компьютера. Разработанный стенд позволяет получить в четырех характерных сечениях значения полного и статического давления, благодаря которым по формулам 1, ...4 рассчитываются значения скорости потока, создаваемой тяги, расхода и напор. Формулы 5, ...7 позволяют определить потребляемую мощность, КПД, а также частоту вращения рабочего колеса.

Для определения скорости потока v (м/с) в характерных сечениях воспользуемся формулой (1), полученной из закона Бернулли:

$$v = \sqrt{\frac{2p_{\text{дин}}}{\rho}} = \sqrt{\frac{2(p_{\text{полн}} - p_{\text{стат}})}{\rho}},\tag{1}$$

где $p_{\rm дин}$ — динамическое давление потока, Па; $p_{\rm полн}$ — полное давление потока, Па; $p_{\rm cmam}$ — статическое давление потока, Па; $\rho=1000$ кг/м³ — плотность пресной воды при 4 °C.

Расход жидкости Q (м³/с) через рассматриваемое сечение определяется по формуле (2):

$$Q = vF = v\frac{\pi D^2}{4},\tag{2}$$

где F — площадь поперечного сечения водометной трубы, м²; D — диаметр водометной трубы в рассматриваемом сечении, м.

Напор насоса H (м) водомета определяется по формуле (3):

$$H = \frac{p_3^* - p_2^*}{\rho g} \,, \tag{3}$$

где p_2^* — полное давление перед рабочим колесом, Па; p_3^* — полное давление за рабочим колесом, Па.

Создаваемая тяга P (H) определяется по формуле (4):

$$P = \rho Q(v_4 - v_1),\tag{4}$$

где v_4 — скорость потока воды на срезе сопла, м/с; v_1 — скорость судна (набегающего потока воды), м/с.

Потребляемая мощность движителя N (Вт) и электродвигателя $N_{\rm д}$ (Вт) определяются по формулам (5) и (6) соответственно:

$$N = N_{\pi} \eta_{\pi} \eta_{B}, \tag{5}$$

$$N_{\pi} = UI, \tag{6}$$

где $N_{\rm д}$ — потребляемая мощность электродвигателем, Вт; $\eta_{\rm д}=0.7$ — КПД щеточного электродвигателя; $\eta_{\rm B}=0.95$ — КПД валопровода; U — напряжение аккумулятора, В; I — потребляемый ток электродвигателем, А.

КПД рабочего колеса водометного движителя определяется по формуле (7):

$$\eta_{pK} = \frac{\rho g H Q}{N}. \tag{7}$$

В программе экспериментальных исследований предусматривается:

- 1) тарировка датчиков давления, мощности, частоты вращения;
- 2) соблюдение условий проведения испытаний;
- 3) проведение испытаний в соответствии с разработанной программой.

Комплекс испытаний включает в себя ходовые испытания модели. При проведении ходовых испытаний выполняются следующие условия:

- испытания проводятся на прямолинейном участке реки длиной не менее 5 м в двух направлениях: против и по течению реки;
- ряд замеров (не менее 3-х) производятся при различной частоте вращения вала электродвигателя;
- выполняется не менее 5 замеров в оба направления движения. Запись показаний производится с интервалом 0,5 с.

Проведение ходовых испытаний позволяет получить зависимости скорости движения модели и потока воды в водометном движителе от частоты вращения рабочего колеса.

Результаты измерений эксперимента записываются в текстовый файл и требуют первичной обработки. Значения P1 ... P8 – показания АЦП, к которым подключены датчики давления. Преобразование показаний АЦП производится по формуле (8), выведенной на основании калибровки датчиков давления:

$$P_i = 580 \frac{1875 \cdot ADC_i \cdot 10^{-6} - C_i}{5 - C_i}, \tag{8}$$

где P_i — давление i-го датчика, кПа; ADC_i — значения АЦП для i-го датчика; C_i — константа для каждого i-го датчика, определяемая при калибровке.

Обработанные данные сводятся в табл. 1, которая далее требует статистической обработки для исключения случайных погрешностей. Большинство экспериментальных распределений может быть описано с помощью нормального распределения. Одним из важных моментов является проверка распределения на соответствия на соответствие предположения о

его «нормальности». Для определения соответствия нормального распределения результатов эксперимента используется пакет программного обеспечения для статистического анализа PAST, позволяющая сразу получить Р-значения по различным критериям: Шапиро-Уилка, Андерсона-Дарлинга, Лиллиефорса и Харке-Бера. Перечисленные критерии проверяют нулевую гипотезу об отсутствии различии между наблюдаемым распределением и теоретически ожидаемым нормальным распределением.

Зададимся условием, что гипотеза о нормальности распределения справедлива при *Р*-значении большем 0,05. Результаты проверки гипотезы представлены на рис. 8, выделенные ячейки таблицы свидетельствуют о невыполнении критерия. В табл. 1 потребляемая мощность рассчитывается по формуле (6), P1 — полное давление перед рабочим колесом, P2 — статическое давление перед рабочим колесом, P3 — статическое давление за рабочим колесом, P5 — полное давление на срезе сопла, P6 — статическое давление на срезе сопла, P7 — полное давление перед водозаборником, P8 — статическое давление перед водозаборником.

Таблица 1. Обработанные результаты испытаний при 10000 об/мин

Частота вращения, об/мин	Потребляемая мощность, Вт	Показания датчиков давления, кПа								
		P1	P2	P3	P4	P5	P6	P7	P8	
10094	167	-2,37	-15,31	13,37	18,68	21,56	-1,50	2,23	1,13	
10132	163	-2,64	-15,19	13,83	18,90	21,53	-1,70	2,40	1,08	
10132	166	-2,90	-15,31	13,13	18,49	21,39	-1,43	2,31	1,15	
10080	161	-2,49	-15,22	13,52	18,49	20,98	-1,67	2,11	1,13	
10077	164	-2,95	-15,36	13,01	18,58	20,96	-1,48	2,43	1,15	
10115	166	-2,83	-15,24	13,18	18,08	21,17	-1,67	2,11	1,13	
10124	164	-2,40	-15,39	13,06	18,85	20,96	-1,53	2,48	1,15	
10126	159	-2,49	-15,34	13,18	18,94	21,15	-1,60	2,19	1,13	
10154	160	-2,15	-15,22	13,28	19,09	21,00	-1,55	2,28	1,10	
10162	160	-2,18	-15,39	13,21	19,26	20,84	-1,45	2,40	1,15	
10162	165	-2,23	-15,12	13,18	18,73	20,33	-1,53	2,21	1,15	
10162	161	-2,25	-15,34	13,11	18,94	20,50	-1,43	2,40	1,13	
10132	160	-2,49	-15,43	13,09	18,82	19,92	-1,65	2,28	1,10	
10124	164	-2,76	-15,17	13,42	18,13	21,61	-1,84	2,33	1,10	
10105	161	-2,56	-15,27	12,92	18,85	21,10	-1,60	2,40	1,13	

	A	В	C	D	E	F	G	Н	I I	J
	15	15	15	15	15	15	15	15	15	15
hapiro-Wilk W	0,926	0,9189	0,9449	0,9684	0,9012	0,9456	0,9262	0,9416	0,9384	0,839
p(normal)	0,2375	0,1851	0,4486	0,8333	0,09933	0,4579	0,2391	0,4034	0,3626	0,01218
nderson-Darling A	0,3917	0,5271	0,2843	0,2225	0,5808	0,3802	0,4418	0,289	0,3742	1,042
o(normal)	0,334	0,149	0,5788	0,7896	0,1093	0,3568	0,2494	0,565	0,369	0,006823
p(Monte Carlo)	0,3383	0,1583	0,6168	0,8007	0,108	0,3686	0,2538	0,5953	0,3739	0,0066
lliefors L	0,1466	0,2138	0,1347	0,1344	0,2063	0,1515	0,1993	0,1199	0,1962	0,2805
p(normal)	0,5114	0,06081	0,6482	0,6516	0,0818	0,4576	0,1062	0,8096	0,1191	0,0007512
p(Monte Carlo)	0,5142	0,0546	0,6467	0,6515	0,0836	0,4675	0,1075	0,8021	0,1205	0,0026
arque-Bera JB	0,6249	1,223	0,9035	0,7351	4,583	0,8243	1,485	0,9822	0,8824	1,481
p(normal)	0,7317	0,5426	0,6365	0,6924	0,1011	0,6622	0,4759	0,6119	0,6433	0,4769
p(Monte Carlo)	0,6311	0,2498	0,4273	0,5384	0,0268	0,4717	0,1742	0,3799	0,4381	0,1753
Copy	Print	Monte Carlo N:	9999 Recompute							

Рис. 8. Результат проверки нормального распределения

Основная часть показаний соответствует гипотезе о нормальном распределении значений (рис. 8). Показания Р3 не соответствуют критерию Харке-Бера, а показания Р8 не соответствуют большинству критериев, что говорит о малой повторяемости данных величин в ходе эксперимента. На основе полученных данных строятся графики зависимостей основных параметров водомета от частоты вращения, по которым в дальнейшем возможно сравнение эффективности различных спроектированных конструкций водометных движителей.

Библиографический список

- 1. Папир, А.Н. Водометные движители малых судов / А.Н. Папир. Л.: Судостроение, 1970. 256 с.
- 2. **Зеленов, С.Н.** Особенности выбора движительного комплекса речных судов / С.Н. Зеленов, Е.С. Шишов // Транспортные системы. 2023. № 2(28). С. 40-49.
- 3. **Анчиков, С.Л.** Водометные движители. Вопросы проектирования / С. Л. Анчиков. СПб.: Реноме, 2021.-252 с.