УДК 62-843.6 EDN: FCGQEY

А.Г. Воеводин, А. Кориши, С.Н. Хрунков ЗАМЕНА ВОЗДУШНОЙ СИСТЕМЫ ПУСКА ГАЗОПОРШНЕВЫХ ДВИГАТЕЛЕЙ РУМО 8ДГ22/28 НА ЭЛЕКТРОСТАРТЕРНУЮ

Нижегородский государственный технический университет им. Р.Е. Алексеева *Нижний Новгород, Россия*

Приведены результаты опытных данных по пуску двигателя сжатым воздухом от одного и двух баллонов, предложены варианты с конкретными электростартерами и аккумуляторными батареями. Рассмотрены схемы включения и электрические характеристики. Предусмотрены компрессоры и баллоны, потенциально взрывоопасные (сосуды, работающие под давлением) и подлежащие периодическому освидетельствованию со стороны надзорных органов. Рассматривается возможность замены воздушной системы пуска двигателей на электростартерную. Результаты могут использоваться при разработке систем пуска аналогичных газопоршневых агрегатов и дизельных двигателей.

Ключевые слова: газопоршневые двигатели, пуск сжатым воздухом, пуск электростартерный, характеристики электростартеров.

В настоящее время пуск газопоршневых двигателей 8ДГ22/28 производства Нижегородского завода РУМО, входящих в состав когенерационных установок, осуществляется сжатым воздухом. Для этого в системе предусмотрены компрессоры и баллоны, потенциально взрывоопасные (сосуды, работающие под давлением) и подлежащие периодическому освидетельствованию со стороны надзорных органов. В данной работе рассматривается возможность замены воздушной системы пуска двигателей на электростартерную.

1. Определение пусковых характеристик при запуске сжатым воздухом

Ниже приводятся материалы протоколов пусковых испытаний (проверки пусковых качеств) электроагрегата 8ДГ22Г1. Во время проверки пуски проводились от одного и двух пусковых баллонов емкостью 400 л (каждый) при начальном давлении воздуха в них 30 кгс/см². При нажатии кнопки «Пуск» на местном щите управления двигатель начинал раскручиваться на воздухе. При достижении частоты вращения порядка 150 об/мин кнопка отпускалась и двигатель начинал работать на топливе (природном газе). При выходе на минимальную частоту вращения (500 об/мин) производилась остановка двигателя.

Проведение пусков от двух пусковых баллонов

Условия проведения пусков: температура окружающего воздуха $-18~^{0}$ C; атмосферное давление -750~мм рт. ст.; температура воды внутреннего контура и масла $-18~^{0}$ C.

Результаты проведения пусков представлены в табл. 1.

Таблица 1. Результаты проведения пусков от двух пусковых баллонов

№	Давление возд	цуха, кгс/см ²	Васуан вознука и Вромя нуска			
пуска	до пуска	после пуска	Расход воздуха, л	Время пуска, с		
1	30,0	18,0	9600	26		
2	18,0	16,5	1200	6		
3	16,5	14,5	1600	9		
4	14,5	13,5	800	7		
5	13,5	11,0	1200	10		
6	11,0	10,0	800	10		
7	10,0	9,5	400	14		
8	9,5	(1	Пуск не состоял коленчатый вал не прокр			

Расход воздуха на один пуск составил в среднем -2,2 н. M^3 .

Время одного пуска составило в среднем – 12 с (до частоты вращения 150 об/мин).

Время до выхода двигателя на минимальную частоту вращения (500 об/мин) от нажатия кнопки «Пуск» – 55 с.

Определение расхода воздуха выполнялось расчетным путем.

Проведение пусков от одного пускового баллона

Условия проведения пусков: температура окружающего воздуха -21 0 C; атмосферное давление -763 мм рт.ст.; температура воды внутреннего контура и масла -21 0 C.

Результаты проведения пусков представлены в табл. 2.

Таблица 2. Результаты проведения пусков от одного пускового баллона

№ пуска	Давление воз	вдуха, кгс/см ²	Роскоп розника п	Вромя пуска с				
J,	№ пуска	до пуска	после пуска	Расход воздуха, л	Время пуска, с			
	1	30,0	16,0	5490	15			
	2	16,0	12,0	1569	10			
	3	12,0	10,0	784	11			
	4	10,0	Пуск не состоялся					

Расход воздуха на один пуск составил в среднем -2.6 m^3 .

Время одного пуска составило в среднем – 12 с.

Увеличение количества пусков и снижение среднего расхода воздуха на один пуск при использовании двух баллонов объясняется меньшими скоростями прохождения воздуха в системе пуска (на выходе из баллона в систему) и, соответственно, меньшими значениями гидравлических сопротивлений.

На основе экспериментальных данных протоколов испытаний рассчитывались величины средних давлений каждого пуска (среднеарифметическое значение давлений до и после пуска) и мощность пуска, определяемого по формуле:

$$N = (P \cdot G) \cdot 10^{-3} / t \tag{1}$$

где N – мощность пуска, кВт;

P – среднее давление пуска (пускового воздуха), Па;

G – расход воздуха на пуск, м³;

t – время пуска, с.

Значения рассчитанных параметров P и N для условий пуска из двух и одного баллона приведены в табл. 3 и 4.

 Таблица 3.

 Результаты проведения пусков от двух пусковых баллонов

№ пуска	Среднее давление пуска, Па(H/м²)	Расход воздуха, м ³	Время пуска, с	Мощность пуска, кВт
1	2400000	9,6	26	886
2	1730000	1,2	6	240
3	1550000	1,6	9	276
4	1400000	0,8	7	160
5	1250000	1,2	10	150
6	1050000	0,8	10	84
7	1000000	0,4	14	29
8	475000	Пуск не со	стоялся (коленчатый	и вал не прокручивался)

			Таблица 4.
Результаты	проведения п	усков от одного	пускового баллона

№ пус- ка	Среднее давление пуска, Па(H/м²)	Расход воздуха, м ³	Время пуска, с	Мощность пуска, кВт				
1	2300000	5,49	15	842				
2	1400000	1,6	10	224				
3	1100000	0,8	11	80				
4	500000	Пуск не состоялся (коленчатый вал не прокручивался)						

Результаты расчетов показывают, что минимальная пусковая мощность составляет 29 кВт при пуске от двух баллонов. Возможно, что при пуске от трех и более пусковых баллонов эта мощность снизится еще более (это нуждается в проведении дополнительных опытов), однако представляется, что это снижение будет не слишком значительным. Следует отметить, что часть пусковой мощности затрачивается на гидравлические потери пускового воздуха в системе и подогрев его (от расширения) в цилиндре, поэтому электростартерная мощность должна быть ниже.

2. Определение пусковых характеристик при запуске электростартером

В соответствии с рекомендациями [1] для четырехтактных дизелей пусковой момент определяется

$$M = 15.2 \cdot v^{0.25} \cdot i \cdot V = 15.2 \cdot 1.41 \cdot 8 \cdot 10.6 = 1817.0; \tag{2}$$

где M – пусковой момент, $H \cdot M$;

v – кинематическая вязкость масла, Ст (для используемого масла M14Г2ЦС

v = 4.0 Ст при нормируемой температуре пуска 20 0 С) ;

i = 8 — число цилиндров;

V = 10,6 л — рабочий объем цилиндра газопоршневого двигателя 8ГЧН 22/28 (8Г22Г1).

Согласно [1], требуемая мощность электростартера составит:

$$N = M \cdot n / 9550 = 1817 \cdot 150 / 9550 = 29,0 \text{ (kBt)}$$
(3)

где n = 150 об/мин — минимальная пусковая частота вращения (см. выше).

Таким образом, пусковая мощность, определенная экспериментально при воздушном способе пуска с двумя баллонами и расчетная практически совпали, что позволяет с большой долей уверенности опираться на полученное значение при выборе электростартера.

3. Стартер-генератор 5СГ

На железнодорожных тепловозах типа ТГМ-6 с дизелями 6ЧН21/21(222Д-1) номинальной мощностью 1,2 МВт и частотой вращения 1400 об/мин (в плане пуска сопоставимо с нижегородскими двигателями АО «РУМО») в качестве электрических стартеров давно и успешно применяются стартер-генераторы 5СГ (производство АО «Привод», г. Лысьва, www.privod.org), характеристики которого приведены в табл. 5. Стартер-генераторы предназначены для пуска дизель-генератора и для работы в качестве вспомогательного генератора тепловоза. Стартер-генераторы работают в режимах: стартерном (режим трогания и режим прокрутки) и генераторном. Режим работы в стартерном режиме кратковременный, в генераторном – перемежающийся (S2) и продолжительный (S1).

Для 5СГ сертификат соответствия № ССФЖТ RU.ЦТ03.Б.03381.

Масса изделия $5C\Gamma - 800$ кг, напряжение -110 В.

При этом рекомендуется использовать аккумуляторную батарею 48 ТН450 напряжением 96 В и массой 1500 кг производства АО «Электросиб», г. Ленинск-Кузнецкий .

Однако следует отметить, что поскольку в генераторном режиме работа устройства не планируется, использовать его чисто в качестве стартера вследствие высоких стоимостных и массогабаритных показателей нецелесообразно.

	Таблица 5.
Характеристики	стартер-генератора 5СГ

Режим работы	Мощность, кВт	Продолжительность максимальной нагрузки, %	Сила тока, А	Частота вращения, об/мин	КПД, %
S1	50	100	455	1050	86
S2	62	50	564	1050	86

Кроме того, изначально стартер-генератор предназначен для фланцевого соосного соединения с двигателем, в то время как требуется параллельное соединение через зубчатый венец, установленный на маховике. По информации изготовителя стартер-генератора, момент у 5СГ больше 2000 Н·м, поэтому использование зубчатого соединения ставится им под сомнение (зубья могут сломаться). В любом случае использование зубчатого соединения требует расчета на механическую прочность, при положительном результате механического расчета использование зубчатого соединения допускается на усмотрение потребителя, т.е. такое соединение в принципе возможно, но требует дополнительного расчетно-экспериментального подтверждения, что достаточно трудоемко.

4. Стартер С-34

Аналогично стартер-генератору 5СГ, для пуска дизелей 6ЧН21/21(222Д-1) тепловозов ТГМ-6 используется стартер С-34, технические параметры которого приведены в табл. 6. Стартер-электродвигатель постоянного тока, последовательного возбуждения, с приводом инерционного типа, который обеспечивает автоматический выход шестерни стартера из зацепления с маховиком, при частоте его вращения, превышающей частоту вращения шестерни стартера.

Привод стартера снабжен фрикционной муфтой. Стартер рассчитан для кратковременной работы от стартерных батарей. Пуск стартера дистанционный, производится пусковой кнопкой и пусковым реле.

Таблица 6. Технические параметры стартера С-34

Максимальная мощность:	22 кВт	
Напряжение питания:	64 B	
максимальный момент при трогании	20 кгс∙ м	
Номинальный момент прокрутки	8, 5 кгс. м	
Номинальная частота вращения	2 500 об/мин	
Основные параметры шестерни:		
• диаметр делительной окружности	49, 5 мм	
• диаметр наружной окружности	60, 5 мм	
• число зубьев	11	
• угол зацепления	20	

Для питания стартера C-34 рекомендуется использовать свинцовокислотную аккумуляторную батарею 32 ТН450 напряжением 64 В, емкостью 450 А ч и массой 1000 кг производства АО «Электросиб», г. Ленинск-Кузнецкий.

5. Схема системы электростартерного пуска

Данная система в основном используется для пуска автотракторных двигателей. Она включает в себя аккумуляторную батарею, стартерный электродвигатель (электростартер), а также элементы управления — тяговое и дополнительное реле и реле блокировки. Структурная схема системы электростартерного пуска представлена на рис. 1. Типовая схема управления электростартером в системе представлена на рис. 2.

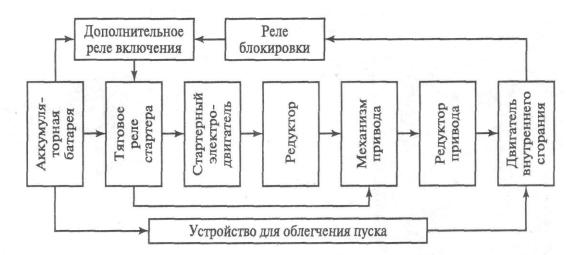


Рис. 1. Структурная схема системы электростартерного пуска

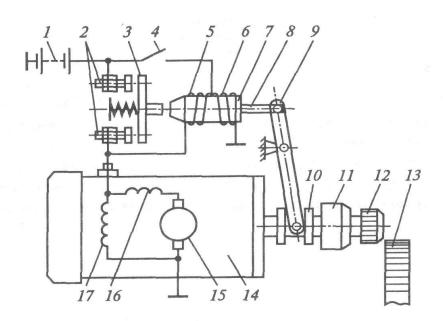


Рис. 2. Типовая схема управления электростартером:

1 — аккумуляторная батарея; 2 — контактные болты; 3 — подвижная контактная пластина; 4 — выключатель стартера; 5 — втягивающая обмотка тягового реле;

6 – удерживающая обмотка тягового реле; 7 – якорь тягового реле; 8 – шток; 9 – рычаг привода; 10 – поводковая муфта; 11 – муфта свободного хода; 12 – шестерня привода;

13 – зубчатый венец маховика; 14 – стартерный электродвигатель;

15 — якорь стартерного электродвигателя; 16 — последовательная обмотка возбуждения; 17 — параллельная обмотка возбуждения

6. Электрические характеристики стартерных аккумуляторных батарей

Электродвижущая сила (ЭДС), напряжение

ЭДС аккумулятора зависит от химических свойств активных материалов и плотности электролита. Изменение напряжения на зажимах аккумуляторной батареи при разряде U_p по времени τ_p зависит от разрядного тока I_p и температуры электролита t (рис. 3).

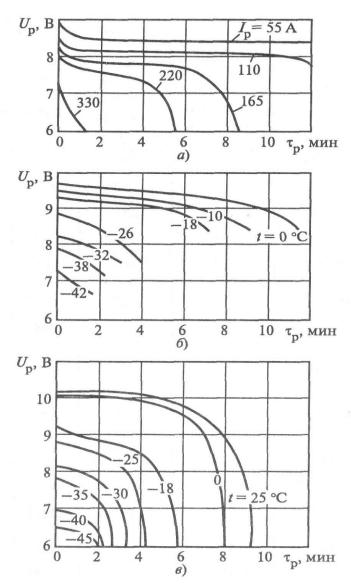


Рис. 3. Разрядные характеристики аккумуляторных батарей: a-6CT-559M npu t=-20 °C; 6-6CT-909M npu $I_p=270$ A; 6-6CT-190TP npu $I_p=500$ A

Вольт-амперные характеристики

Рабочие характеристики стартерного электродвигателя строят для определенной вольт-амперной характеристики аккумуляторной батареи. Уравнение вольт-амперной характеристики:

$$U_{\rm p} = U_{\rm Hp} - R_{\rm \delta} I_{\rm p},\tag{4}$$

где $U_{\rm Hp}$ — начальное разрядное напряжение, B; R_6 — расчетное внутреннее сопротивление батареи, Ом. Экспериментальные вольт-амперные характеристики аккумуляторных батарей для третьей попытки пуска при различных температурах электролита t и степени разряженности ΔC_p приведены на рис. 4.

В режиме короткого замыкания, когда напряжение на зажимах батареи $U_{\rm p}=0$, ток, А $I_{\rm K}=U_{\rm Hp}\,/\,R_{\rm 6}=I_{\rm +}n_{\rm +}\,,$ (5)

где I_+ – условный ток короткого замыкания, приходящий на один положительный электрод, A; n_+ – количество положительных электродов в аккумуляторе.

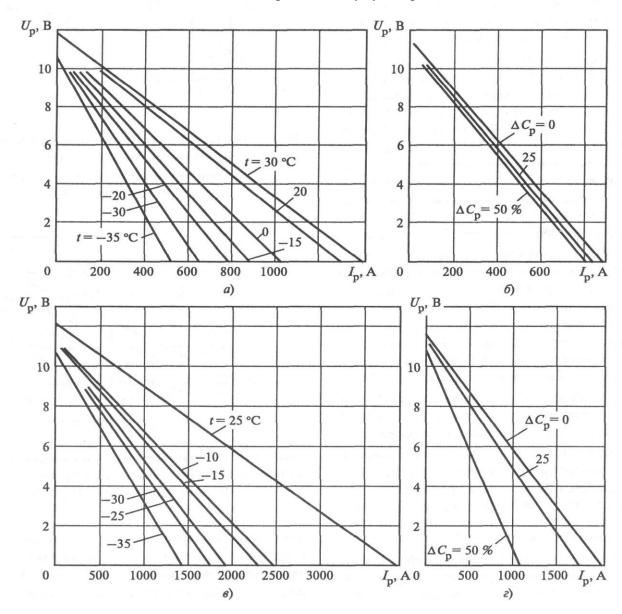


Рис. 4. Вольт-амперные характеристики аккумуляторных батарей в различных условиях разряда:

$$a - 6CT - 559M$$
, $\Delta C_p = 25\%$; $6 - 6CT - 559M$, $t = -20$ °C; $e - 6CT - 190TP$, $\Delta C_p = 25\%$; $e - 6CT - 190TP$, $t = -25$ °C

На рис. 5 приведены единые расчетные вольт-амперные характеристики одного аккумулятора при $n_+=1$; $\Delta C_p=0$ и температуре электролита от +40 до -40 °C. Переход к конкретному типу аккумуляторной батареи осуществляется путем умножения значений I_+ и $U_{\rm Hp}$ на осях единой характеристики на соответствующее число аккумуляторов в батарее и число положительных пластин n_+ .

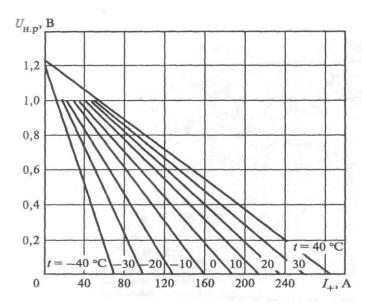


Рис. 5. Единые расчетные вольт-амперные характеристики аккумуляторных батарей для $\Delta C_p = 0$ и температуре электролита от +40 до -40 °C

7. Основные группы электростартеров

Классификация

Электростартеры отличаются по способу возбуждения электродвигателя, конструкции коллектора, типу механизма привода, степени защиты от проникновения посторонних тел и воды, а также по способу крепления на двигателе. По типу и принципу работы механизма привода можно выделить следующие основные группы стартеров: с принудительным механическим или электромеханическим вводом шестерни в зацепление и выводом из зацепления с зубчатым венцом маховика; с принудительным электромеханическим вводом шестерни в зацепление с зубчатым венцом маховика и ее автоматическим выводом из зацепления после пуска двигателя (комбинированный привод).

Для предотвращения разрушения якоря под действием центробежных сил после пуска двигателя в электростартеры устанавливают роликовые, храповичные и храповичнофрикционные муфты свободного хода. Стартеры имеют буквенно-цифровое обозначение (СТ230-Л, СТ402-А и др.) или обозначения по нормали ОН 025.215-69 (631.3708, 25.3708 и др.).

Рабочие характеристики

Свойства электростартеров оценивают по рабочим и механическим характеристикам. Рабочие характеристики (рисунок 6) представляют собой совокупность зависимостей напряжения на зажимах стартера $U_{\rm ct}$ полезной мощности P_2 , частоты вращения nя, и вращающего момента M_2 от тока якоря $I_{\rm R}$. Они зависят от способа возбуждения и изменяются с изменением номинальной емкости и технического состояния аккумуляторной батареи. Под номинальной мощностью электростартера понимают наибольшую полезную мощность в кратковременном режиме работы на первой попытке пуска двигателя при питании от аккумуляторной батареи максимально допустимой емкости, указанной для данного стартера в его технических условиях, степени заряженности батареи 100 %, температуре электролита +20 °C, отсутствии падения напряжения в сети. Параметры электростартеров в режимах номинальной мощности, холостого хода и полного торможения для напряжения 24 В приведены в табл. 7.

Основные требования

Электростартеры изготавливают в соответствии с требованиями ОСТ 37.003.084-88 «Стартеры электрические автотракторные. Общие технические условия», ГОСТ 3940-84 и конструкторской документации на конкретные типы электростартеров. Режим работы электростартеров по ОСТ 37.003.084-88 кратковременный с длительностью включения до 10 с при 20 °С. При отрицательных температурах допускается длительность работы стартеров до 15 с для бензиновых двигателей и до 20 с для дизелей.

Tаблица 7. Параметры электростартеров в различных режимах

	Номи-	Режим	номинал	ьной мог	щности	и Режим холостого хода Режим полн- торможени					
Тип стартера	нальная емкость аккуму-	Мощ-	ролу	Частота вращения вала стартера, об/мин	Ток, А	Напряжение, В	Ток, А	вращения вала	Крутящий момент на валу стартера, Н∙м	Ток, А	Напряже- ние, В, не более
			Элек	гростарт	еры на і	напряжен	ние 24 В				
CT402;	75	1,21	10,2	1160	135	24	35	4000	23	265	19,5
CT402-A;											
СТ402-Б СТ142-Б1	190	8,3	53,5	1510	835	24	130	7000	50	800	8
30.3708	182	7,3	53,1	1340	830	24	130	7000	50	800	8
25.3708	182	8,0	68,3	1140	800	24	110	5000	60	825	7
25.3708-01	182	8,2	62,2	1280	900	24	по	5000	60	900	7
16.3708	190	12	127	920	1600	24	160	2600	65	950	7,5
5652.3708	190	8,2	51	1500	780	24	90	4300		900	11,8
5662.3708	190	8,2	51	1500	780	24	90	4300		900	11,8
36.3708; 361.3708;	190	8,2	51	1500	780	24	90	4300		900	11,8
321.3708; 322.3708											
2002 2700	400			1.400	0.1.0		100			0.50	10
3002.3708	190	7,7	5,5	1400	810	24	100		6,0	960	10

Тяговое реле современного стартера должно обеспечивать вход шестерни в зацепление и включение при снижении напряжения до 8 В для стартеров напряжением 12 В и до 16 В для стартеров напряжением 24 В при температуре окружающей среды 20 ± 5 °C. Контакты реле стартера должны оставаться замкнутыми при снижении напряжения на стартере до 4 и 8 В при номинальных напряжениях соответственно 12 и 24 В. Электростартеры имеют степень защиты не ниже IP44 по ГОСТ 14254-80 (кроме полости привода). Рабочий цикл электростартера (на стенде) должен быть не более 15 с при температуре окружающей среды 20 ± 5 °C. Допускается не более трех пусковых циклов подряд с перерывом между ними не менее 30 с. После охлаждения стартера до температуры окружающей среды допускается еще один пусковой цикл. В качестве примера на рис. 6 приведены характеристики стартера СТ-230-А1.

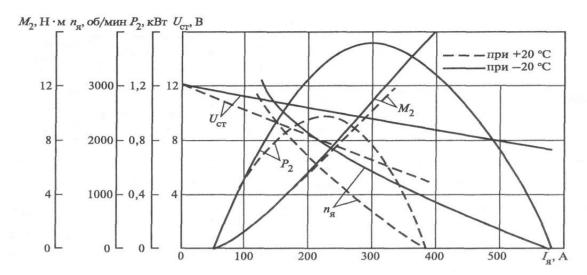


Рис. 6. Рабочие характеристики электростартера типа СТ230-А1

Приведенные расчеты обосновывают возможность использования электростартерной системы пуска газопоршневого двигателя вместо воздушной.

Библиографический список

- 1. Двигатели внутреннего сгорания. Системы поршневых и комбинированных двигателей / под общ. ред. А.С. Орлина, М.Г. Круглова. М.: Машиностроение, 1985. 456 с.
- 2. **Крутов, В.И.** Автоматическое регулирование двигателей внутреннего сгорания / В.И. Крутов. М.: Машиностроение, 1989. 615 с.
- 3. **Кориши, А.** Экспериментальное исследование влияния состояния органов впуска четырехцилиндрового четырехтактного дизельного двигателя на внешние и нагрузочные характеристики / А. Кориши, В.А. Гурин, С.Н. Хрунков // Транспортные системы. 2023. № 1 (27). С. 31-42.
- 4. **Горелик, Г.Б.** Основы автоматики и автоматизация судовых энергетических установок: учеб. пособие / Г.Б. Горелик. Хабаровск: Изд-во Хабар. гос. техн. унта, 2001. 203 с.
- 5. **Кориши, А.** Влияние интенсивности подвода теплоты и циклового массового наполнения на термодинамические циклы дизельного двигателя / А. Кориши, С.Н. Хрунков // Транспортные системы. 2022. № 2 (24). С. 33-41.
- 6. **Ланчуковский, В.И.** Автоматизированные системы управления судовых дизельных и газотурбинных установок / В.И. Ланчуковский, А.В. Козьминых. – М.: Транспорт, 1990. – 335 с.